If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+c-2=0
a = 1; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·1·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*1}=\frac{-4}{2} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*1}=\frac{2}{2} =1 $
| 2f=f•f | | 3(2x-4)+3x=6x+12 | | (6+5i)+(–3+2i)=0 | | -5(3y-2)+20y=15 | | 420=5y | | 9+9r=81 | | 9(n+4)=-135 | | 6/3=7n+4/2n+8 | | 6/a=3/2 | | 2/5x+10=50 | | 3c+6=4 | | −2w−3w=12+5 | | 2x-18+2x-22=8 | | -5z-(15z+5)=5+(9z+30) | | −2w−3w=12+5−2w−3w=12+5 | | 6/x=252 | | -19=x=10 | | 4+x+5=3x-5 | | 3+3/2x+4=4-5/2 | | 2j +7=12 | | I2x+5I=12 | | 29k+22=29 | | -3(3x-2)-3x-1=103 | | x+14+x+15=15 | | Y=6x+22= | | 240=5x^2-2x | | 9(e+11)=10(e-5) | | 2(-x+5)+2x+2=4 | | -2.1r=-5.88 | | 30=-x+73 | | 5=-2a-9 | | 6d+8=14d+3d |